If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5d^2=125
We move all terms to the left:
5d^2-(125)=0
a = 5; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·5·(-125)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*5}=\frac{-50}{10} =-5 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*5}=\frac{50}{10} =5 $
| 3c-(c+2)=2 | | 25+15x=10x | | .20x+10=50 | | 5^x=550 | | 4x-2=14=14 | | √3(x+2)+2√3(x+1)=6√3 | | 5k–4=10 | | 5(3x-4)=12-7x | | 9*x+5=180² | | 9+x+5=180² | | x-0.96x=88 | | Z=100+j78.54 | | 2x3-4x2+3-4=0 | | 2x3-4x2+3x-4=0 | | 3(x+5)/2=5x-18 | | 9x+9-4x=7*(2+7X) | | 8y–54=42 | | 7b=21-14 | | 3(4x-7)-4(5-3x)=10x-13 | | 7b+21=0 | | 16-24=4c-144 | | 2{x+4)+6=22 | | 2-(3+4x)4-2x=-9+2(1-15x) | | 7I2-(3+4x)4-2x=-9+2(1-15x) | | 5e+2=3e | | x2-9x=120 | | 3x—18=7—2x | | 3x-5+4*9=13 | | 7^x-1=49x^-1 | | 82+(2-3x)=180 | | 8/y+1=2 | | 2x-5/3=-11 |